Database : A database is a collection of related data. Badwe mean known facts that can be recorded
and that have implicit meaning. A database hasall@ving implicit properties
1. A database is a logically coherent collection dadaith some inherent meaning.
2. A database is designed, built, and populated vath ¢br a specific purpose. It has an intended
group of users and some preconceived applicatiovhioh these users are interested.

3. A database represents some aspect of the real.world

A database can be of any size and of varying caoxiipleA database may be generated and
maintained manually or by machine.

A database management system (DBMS) is a colleciigorograms that enables users to create
and maintain a database. A DBMS is hence a geparpbse software system that facilitates the
processes of defining, constructing and manipujatiatabases for various applications. The datadnade

software are together called a database system.

Use of DBM S:-

1. Controlling Redundancy Redundancy means storing of same informatiamuitiple time. It leads to

several problems like performing single logical afd many times, wastage of memory space and
inconsistency. To avoid all such problem we shdwdde a database design that stores each logi@al dat
item in only one place in the database.

2. Sharing of data The DBMS must include concurrency control w@aite to ensure that several users

trying to update the same data do so in a conttollanner so that the result of the updates is ciorre

3. Restricting Unauthorized AccessWhen multiple users share a database, it @ylikhat some users

are not authorized to access all information indatabase. In addition some user may be permitigd o
to retrieve data, whereas others are allowed td betrieve and update. Hence the type of access
operation can also be controlled. A DBMS shoulavfate a security and authorization subsystem, which
is used by the DBA to create account and specifg@aat restrictions.

5. Providing Multiple Interfaces Because many types of users, with varying texdirknowledge, use a

database, a DBMS should provide a variety of usterfiaces. The types of interfaces include query
languages for casual users, programming languagefanes for application programmers forms for
parametric users, menu-driven interfaces for natsars and natural language interfaces.

6. Representing Complex Relationships among :Datadatabase may include a variety of data that a

interrelated in many ways. A DBMS must have theatdliy to represent a variety of complex

relationships among the data as well as to reti@evkupdate related data in easy and efficient erann

7. Enforcing Integrity Constraints Most database applications will have certategnity constraints like

data type of data item, uniqueness constraint td deam, relationship between records of differiist
etc. These integrity constraints must be specdigihg the database design.

8. Provide Backup and RecoveryA DBMS must provide facilities for recoveringopm hardware or

software failures. The backup and recovery subsystiethe DBMS is responsible for recovery.

3. Degree of a Relationship Typehe degree of a relationship type is the numifgranticipating

entity types. A relationship type of degree tweaadled binary and of degree three is called ternary

4. Constraints on Relationship TypeShere are two types of constraints on relatiqm$ypes.

a) Cardinality Ratio- The cardinality ratio constraints specify thember of relationship instances

that an entity can participate in. Different rataose 1:1 1:N and M: N
b) Participation constraint Participation constraint specifies whether ¢lestence of an entity on its

being related to another entity via the relatiopshype. There are two types of participation

constraints, total and patrtial.

Relational Algebra: - Relational algebra is a collection of operatiomsrelation. Each operation takes

one or more relations as its operand and produuether relation as its result. These operationsiseel

to select tuples from individual relations and wmbine related tuples from several relations fa th
purpose of specifying a query, a retrieval request,the database. Different types of operation in
relational algebra are

1. SELECT operatian- The algebraic SELECT operator yields a horiabsubset of a fiven

relation that is subset of tuples for which a spedipredicates is specified. The predicate is esped as
a Boolean combination of terms, each term beingngle comparison that can be established as tru or
false for a given tuple by inspecting that tuplésimlation.
The SELECT operator is unary that is it is agplen a single relation. Hence SELECT
cannot be used to select tuples from more tharrelagon. The number of tuples in the resultingtieh
is always less that or equal to the number of gipleghe original relation.
2. PROJECT operation The PROJECT operator yields a vertical subget given relation, that

is that subset obtained by selecting specifiedbati in a specified left to right order and th&imaating

duplicate tuples within the attributes selectede THumber of tuples in a relation resulting from a
PROJECT operation will be les than or equal tonimeber of tuples in the original relation.

3. JOIN- The JOIN operation is used to combine relatgadeti from two relations into single
tuples. The result of the JOIN operation is a r@a@ with m+n attributes that is m attributesnfréirst
relation and n attributes from another relatione Tiples in the relation resulting from a JOIN @pien
are those, which will satisfy the condition giventhe join operation. Different types of JOIN op&ra
are :

a) Theta join - A join condition is of the form

<Condition> AND <condition> AND.......... AND <conditionwhere each condition is
of the form A@ B;. Aiis an attribute of R. Bs an attribute of S, Aand B has the same domain

and 0 is one of the comparison operators { =, <, <=, >3, #}. A join operation with such a

general join condition is called a theta join.

b) Equi Join - The most common join operation involves joinndition with equality
comparisons only. Such a join where only comparigperator used is equal sign is called an Equijoin.
The relation produced by Equijoin, contain one arenpairs of attributes that have identical valures
every tuple because the equality join conditiosgscified on these two attributes.

c) Natural join - It is basically an equijoin but it eliminatdsetduplicate attribute in the result. It
is denoted by *.

d) Outer join - Generally Join operation select all the tudiesn the two relation which will
satisfy the join condition. But outer join is usiedkeep all tuples in R or S or both in the resuhgther
or not they have matching tuples in the other i@hatDifferent types of outer joins are

i) Left outer join - The left outer join operation keeps every tgplethe first or left relation R in

R S. If no matching tuple is found in S,rthibe attributes of S in the result are filled witll

values.

i) Right outer join- Right outer join() keeps every tuple i thecond or right relations S in

theresultof R S.

iif) Eull outer join- The full outer join() keeps all tuples ioth the left and right relations

when no matching tuples are found, assigning thé&mnull values as needed.

e) SET operatian Set operations are the standard mathematicabbpe on sets. They apply to
the relational model because a relation is defilmede a set of tuples and they are used whenever we
process the tuples in two relation as sets. Setatipas are binary that is they are applied to $e&ts. The
two relation on which these operations are appladast be union compatib le. Union compatible means

the two relation must have the same type of tufieere are three set operations :

i) UNION: - The union of two relations A and B, A UNION Bthe set of all tuples t belonging to
either A or B (or both). Duplicate tuples are elatied

i) INTERSECTION - The intersection of two relations A and B, ATIRRSECTION B, is the set
of all tuples t belonging to both A and B.

iii) DIFFERENCE - The difference between two relations A and BVMANUS B, is the set of all
tuples t belonging to A and not to B

iv) Cartesian Product Cartesian product is a binary set operationthetrelations on which it is

applied do not have to be union compatible. Thigraton is used to combine tuples from two relation
so that related tuples can be identified. In gdnéra result of R(AL1,A2,....... An) X (B1, B2....... Bm) is
the relation Q with (n+m) attributes Q(A1, A2....... ABl, B2....... Bm) in that order. The resulting
relation Q has one tuple for each combination pfesione from R and one from S. The Cartesian @todu
creates tuples with the combined attributes of telations. We can select only related tuples from t

two relations by specifying an appropriate selectondition.

Structured Query Language (SQLPBQL is a comprehensive database languagesistatements

for data definition, query, and update. Hences lhoth a DDL and DML. It is a very powerful langeag
the sense that most of the operations in RDBMSheaperformed using SQL. An important feature of
SQL is that it is a non-procedural language. lma-procedural language, we have to describe whao to
rather than how to do.

Advantage of SQ1 -

Data types in SQL-

Data Type Specification Description

Char CHAR (size) Char data, size if specified imber

Varchar VARCHAR(size) Same as above

Date DATE Used for specifying dates

Number NUMBER Used to specify numeric data, NUMBERE) or NUMBER(size, deq)
number with digits equal to specified size.

Integer INTEGER Same as number but without decaigit

Raw RAW(size) Raw binary data

Longraw | LONG RAW Raw large binary data

Blob, Clob Large binary and character data

Bfile External files

Different SQL commands are: -
1. CREATE TABLE command This command is used to specify a new reldbpmgiving it a name and

specifying each of its attributes. Each attribigegiven a name, a data type to specify its doméin o

values, and some constraints on the attribute syhtax is

CREATE TABLE tablename (attributenameatatlype constraint
attributename datatype constraint,

for example we can create a student table as fellow
create table student (Roll number(3) priniaay,
name varchar(30) not null,
class varchar (10));
2. DROP TABLE command We can delete the table or relation and itsndein using the DROP
TABLE comand

DROP TABLE tablenamg ;

We can drop the student table as DROP TABLE student
3.ALTER TABLE command- To add attributes to an existing relation, ves aise ALTER TABLE

command.

ALTER TABLE tablename ADD attributename datatype

We can add an extra attribute RESULT to the stutidalé as follows:
ALTER TABLE student ADD result varchar(10) ;

4. INSERT command INSERT command is used to add a single recotdpe to a relation. If we want

to insert record consisting of values of all atités then no need to specify the attribute naneraise

specify the name of those attributes for which vamtto insert values.

INSERT INTO tablename VALUES(valuel, value2, ...\ alue n)
Or

INSERT INTO tablename(attributel, attribute2,...... ttribute n) VALUES(valuel,

value2,......... value n)

For example add a new record in student table
INSERT INTO student VALUES(1, “AAAA”, “B.Sc. T Year”, “1% class”);

5. DELETE command- The DELETE command removes tuples from a refatit includes a where-

clause, to select the tuples to be deleted. Tumlesdeleted from only one table at a time. A m$sin

where-clause specifies that all tuples in the i@tadre to be deleted.

DELETE FROM tablename
Or
DELETE FROM tablename WHERE expression;

Example DELETE FROM student
Or DELETE FROM student WHERE roll = 2;

UPDATE command- The UPDATE command is used to modify attribusdues of one or more selected

tuples. Where-clause can be used to specify tHesup be modified from a single relation. The syt

UPDATE tablename
SET attributename= value

WHERE expression ;

UPDATE student SET result =class” WHERE roll = 3 ;

Build-in-Functions-

a) COUNT:- The COUNT function returns the number gflas or values specified in a query.
b) SUM:- The SUM function return summation of the sped attribute’s value
c) MAX:- The MAX function return maximum value of tiepecified attribute

d) MIN:- The MIN function return minimum value of tlepecified attribute
e) AVG:- The AVG function return average value of gpecified attribute

Integrity Constraints- Intetrity constraints are specified on a dasabachema and are expected to

hold on every database instance of that schemaeHne three types of integrity constraints :

)] Key Constraint - Key constraints specify the candidate keys athe relation schema.

Candidate key values must be unique for every tupkmny relation instance of that relation
schema.

i) Entity Integrity Constraint- The entity integrity constraint states thatpronary key value

can be null

i) Referential Integrity Constraint It is a constraint that is specified betweeo twlations and

iIs used to maintain the consistency among tupleshef two relations. Informally, the
referential integrity constraint states that a éuipl one relation that refers to another relation
must refer to an existing tuple in that relation.

Functional Dependency(BD- A functional dependency is a constraint betwsensets of attributes

from the database. A functional dependency, derlmgedd — Y, between two sets of attributesntl &
that are subsets of R specifies a constraint opadissible tuples that can form a relation instanceR.
The constraint states that for any two tuples td #hin such that t1[X] = t2[X], we must also have
t1[Y] = t2[Y]. This means that the values of thec¥mponent of a tuple in r depend on, or are deteghi
by the values of the X component or, alternativéiyg values of the X component of a tuple uniquely
determine the values of the Y component. We algdlsat there is a functional dependency from X to Y
or that Y is functionally dependent on X.

Entity Relationship Model (ER Modeb At the present time, the ER model is used ryaihiring

the process of database design.

1. Entities - The basic object that the ER model represenemientity, which is a “thing” in the real
world with an independent existence. An entity ni@y an object with a physical existence — a
particular person, car etc, or it may be an objettt a conceptual existence like a company, a jod 0

university course etc.

2. Weak Entity - Some entity may not have any key attributeghefr own. This implies that we may
not be able to distinguish between some entitieslme the combinations of values of their attribute
can be identical. Such entity is called weak entijeak entity is identified by being related to
specific entities from another entity type in comdiion with some of their attribute values. Weak
entity always has a total participation constrainth respect to its identifying relationship. Weak
Entity type has a partial key, which is the setatifibutes that can uniquely identify weak entities
related to the same owner entity.

3. Attribute: - Each entity has particular properties callettitattes that describe it. For example a
student entity may be described by RolINo, Namas§| Address etc. Different types of attributes are

a) Composite Attribute- An attribute, which is composed of more basidlautes, is called composed

attribute. For example Address attribute of a stiide

b) Atomic Attribute - The attributes that are not divisible are ahlmple or atomic attributes. For

example RolINo attribute of a student.

c) Single-valued Attribute- Most attributes have a single value for a patér entity, such attributes

are called single-valued attribute. For exampleeDat_Birth attribute of a person.

d) Multivalued Attribute - The attribute, which has a set of values fa #ame entity is called

multivalued attribute. A multivalued attribute mhgve lower and upper bounds on the number of
values for an individual entity. For example Subgtribute of a student.

e) Derived Attribute - In some cases two or more attribute valuesrel@ed. The value of one

attribute has to be calculated from the value dftleer attribute. Such type of attribute is called

derived attribute. For example Age attribute ofesspn can be calculated from current date and his

date of birth.
f) Key Attribute - An entity type usually has an attribute whosdues are distinct for each individual
entity. Such an attribute is called a key attribated its values can be used to identify each entity
uniguely. Sometimes several attributes togetherfoam a key, meaning that the combination of the
attribute values must be distinct for each indialdantity. Some entity types have more than one key
attribute. In this case, each of the keys is catlethndidate keyWhen a relation schema has several
candidate keys, the choice of one to become prirkawyis arbitrary, however, it is usually better to

choose a primary key with a single attribute omalé number of attributes.

Normal forms - Normalization of data can be looked on as acgse during which unsatisfactory

relation schemas are decomposed b breaking updtigbutes into smaller relation schemas that goss

desirable properties.

i. First Normal Form(1INF): - The first normal form is defined to disay multivalued attributes,

composite attributes and their combinations. THg attribute values permitted by 1NF are singlamto
values. For example

STUDENT (Rollno, Name, Subject, Address).

In the STUDENT relation Subject attribute is medlued attribute and Address is composite
attribute. So this relation is not under INF. Wealepose it according to the 1NF.
R (Rollng Name, Dist, State, Vill, Pin) S (RollnSubject)

STUDENT
|

R(Roling Name, Dist, State, Vill, Pin) S(Rollnayfec)

ii. Second Normal For(@NF): - The second normal form is based on the condeatfoll functional

dependency. A functional dependency ¥ & fall functional dependency if removal of any ihttite
A from X means that the dependency does not hold raare, that is, for any attribute Al X. A
functional dependency X® Y is a partial depengeif there is some attribute Al X that can be
removed from X and the dependency will still hold.

A relation schema R is in 2NF if every nonprimgilatites A in R is fully functionally dependent

on the primary key of R. For example:

PARTS (PartNo, SupplyNo, PartName, SupplyName).Q
T F2: SupplyNo— SupplyName

F1: PartNo— PartName

F3: (PartNo, SupplyNoj» Qty

In this PARTS table F1, F2, F3 functional depengenald. Now if we remove PartNo attribute from
PARTS then the functional dependencies F1 and F3witihold. Again if we remove SupplyNo attribute
from PARTS then the functional dependencies F2 E®avill not hold. That means if we remove any
attribute either PartNo or SupplyNo the functiodependency F3 certainly will not hold. So F3 isfilie
functional dependency and F1 & F2 are partial fimmatl dependency. If the table has partial funclon
dependency then that table is not under 2NF. Sdegempose it into three tables as follows
R (PartNg PartName) S (SupplyN&upplyName) T(PartNo, SupplyNQty)

PARTS

|
v v v

R(PartNoPartName) S(SupplyN&upplyName) T(PartNo, SupplyNQty)

i) Third Normal Form (3NF):- The third normal form is based on the conceptaofransitive
dependency. A functional dependency* 4 ielation schema R is a transitive dependendyeiiet
is a set of attributes Z that is not a subset gflay of R, and both Xx*» ZandZ*> Mdo

A relation is in 3NF if it is in 2NF and no nonpre attribute of R is transitively dependent on the

primary key. For example

EMPLOYEE (EmpCodeEmpName, Salary DeptCode DeptName DeptLocation)

.+ + L 1

In this relation EmpCode can determine the valu&mipName, Salary and DeptCode. So these three

attributes are depending on EmpCode. On the othed IDeptCode can determine the value of the
attributes DeptName and DeptLocation. So both ttrébates are depending on DeptCode but DeptCode
is not a primary key. That means some nonpriméate (DeptName, DeptLocation) are depending on
another nonprime attribute (DeptCode) and that pdme attribute is depending on primary key
(EmpCode). This relation is transitive dependesoyit is not under 3NF. We decompose it as follows:

R (EmpCodeEmpName Salary DeptCode) S (DeptCodmpmtName DeptLocation)
EMPLOYEE
|
R (EmpCodeEmpname Salary DeptCode) S (DeptCbéptName DeptLocation)

iv. Boyce Code Normal Form (BCNF) A relation is in BCNF if whenever a functionamkendency
X~ Aholds in R the X is super key of R.

