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THE SECOND LAW 

Limitation of the first law: 

• The first law of Thermodynamics doesn't place any restriction on the conversion of energy 

from one form to another; it simply requires that the total quantity of energy be the same 

before and after the convention. 

• The first law can't give any information regarding feasibility and direction of a process. 

• The first law states that energy of one form can be converted into an equivalent amount of 

energy of another form. But heat can't be completely converted into an equivalent amount 

of work without producing some changes elsewhere. 

Spontaneous Processes: Processes which do not require work to be done to bring it about are 

called spontaneous processes. 

Example of such changes— 

i) Expansion of a gas to fill the available volume. 

ii) A hot body cools to the temperature of its surroundings. 

However, opposite of these changes — i.e. 

i) to confine a gas to a smaller volume, 

ii) cooling of an object with a refrigerator, do not occur spontaneously; each one must be 

brought about by doing work. 

All natural processes proceed spontaneously (i.e., without external aid) and are thermodynamically 

irreversible in nature. 

Direction of a spontaneous change is related to the distribution of energy. Spontaneous changes 

are always accompanied by a dispersal of energy into a more disordered form. It is highly 

improbable that the chaotic distribution of energy will become organized into uniform motion. 

Therefore, the direction of spontaneous change will be one that leads to the greater chaotic 

dispersal of the total energy of an isolated system. 

A gas does not spontaneously contract, because to do so the chaotic motion of its molecules would 

have to bring them all into the same region of the container. But the opposite change - the 

expansion is spontaneous because the molecules have natural tendency for increasing chaos. 
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The second law of thermodynamics: 

Kelvin - Planck statement: "It is impossible for a system to undergo a cyclic process whose only 

effects are the flow of heat into the system from a heat reservoir and the performance of an 

equivalent amount of work by the system on the surroundings." 

The second law tells us that it is impossible to have a cyclic machine that completely converts a 

certain amount of heat into mechanical work. 

All other forms of energy can be completely converted into heat, but the complete conversion of 

heat into any other form of energy (e.g. work) can't take place without leaving some changes in 

the system or surroundings. 

Clausius Statement: "It is impossible for a system to undergo a cyclic process whose sole effects 

are the flow of heat into the system from a cold reservoir and the flow of an equal amount of heat 

out of the system into a hot reservoir." 

Heal Engine: A heat engine is a machine that converts heat into work. e.g., steam engine. It works 

by withdrawing a quantity of heat |𝑞𝐻| from a hot reservoir, performs |𝑤| amount of work and  

|𝑞𝐶| amount of heat is delivered to the sink. 

 

 

 

 

 |𝑞𝐻| 

 

 

 

 

 

 |𝑞𝐶| 

 

 

 

 

 

Source at TH 

Engine 

|𝑤| = |𝑞𝐻| − |𝑞𝐶| 
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Efficiency of heat engine, 

∈=
𝑤𝑜𝑟𝑘 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑

ℎ𝑒𝑎𝑡 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 

                            

𝑜𝑟, ∈=
|𝑤|

|𝑞𝐻|
 

 

                   ∈=
|𝑞𝐻| − |𝑞𝐶|

|𝑞𝐻|
 

                                    ∈= 1 −
|𝑞𝐶|

|𝑞𝐻|
… … … . (1) 
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Carnot Cycle 

 A Carnot cycle is defined as a reversible cycle that consists of two isothermal steps at different 

temperatures and two adiabatic steps. The working material for a Carnot cycle is 𝑛 mol of a perfect 

gas. All stages are thermodynamically reversible. 

Stage 1: Reversible isothermal expansion at TH 

The system is at equilibrium with the heat source at TH and expands from p1V1 to p2V2. In the 

process, it withdraws qH, amount of heat from the source. 

Here,  

𝑤1  =  −𝑛𝑅𝑇𝐻 𝑙𝑛 
𝑉2

𝑉1
 

Also,  𝛥𝑈 =  0 (isothermal process, T=constant) 

∴ 𝑞𝐻 = −𝑤1  =  𝑛𝑅𝑇𝐻 𝑙𝑛 
𝑉2

𝑉1
 

Stage 2: Reversible adiabatic expansion 

The system is removed from the contact of the hot source and is enclosed with thermal insulation. 

The gas is made to expand adiabatically from p2V2 to p3V3. The temperature of the system drops 

from TH to TC, the temperature of the sink.  

𝑤2 = 𝐶𝑉(𝑇𝐶 − 𝑇𝐻) 

𝑞 = 0 

Stage 3: Reversible isothermal compression at TC 

The system is brought to thermal equilibrium with the sink at TC. The gas is compressed from p3V3 

to p4V4 at TC. During compression it delivers qC amount of heat to the sink. 

𝑤3  =  −𝑛𝑅𝑇𝐶  𝑙𝑛 
𝑉4

𝑉3
 

𝑞𝐶  =  + 𝑛𝑅𝑇𝐶  𝑙𝑛 
𝑉4

𝑉3
 

Stage 4: Reversible adiabatic compression 

The system is removed from the sink, surrounded by thermal insulation and compressed 

adiabatically from p4V4 to p1V1. Temperature increases from TC → TH. 

𝑤4 = 𝐶𝑉(𝑇𝐻 − 𝑇𝐶) 

𝑞 = 0 
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Total work performed, 

                   𝑤𝑟𝑒𝑣  =  𝑤1 +  𝑤2  + 𝑤3 + 𝑤4 

= −𝑛𝑅𝑇𝐻 𝑙𝑛 
𝑉2

𝑉1
+ 𝐶𝑉(𝑇𝐶 − 𝑇𝐻) − 𝑛𝑅𝑇𝐶  𝑙𝑛 

𝑉4

𝑉3
+ 𝐶𝑉(𝑇𝐻 − 𝑇𝐶) 

                                 = −𝑛𝑅𝑇𝐻 𝑙𝑛 
𝑉2

𝑉1
− 𝑛𝑅𝑇𝐶  𝑙𝑛 

𝑉4

𝑉3
 

Again, for adiabatic changes BC and DA, 

𝑇𝐻𝑉2
𝛾−1

= 𝑇𝐶𝑉3
𝛾−1

 

𝑇𝐶𝑉4
𝛾−1

= 𝑇𝐻𝑉1
𝛾−1

 

Dividing, 

(
𝑉2

𝑉1
)

𝛾−1

= (
𝑉3

𝑉4
)

𝛾−1

 

𝑜𝑟,
𝑉2

𝑉1
=

𝑉3

𝑉4
 

Using this, we get, 

𝑤𝑟𝑒𝑣 = −𝑛𝑅𝑇𝐻 ln
𝑉2

𝑉1
− 𝑛𝑅𝑇𝐶 ln

𝑉1

𝑉2
 

          = −𝑛𝑅𝑇𝐻 ln
𝑉2

𝑉1
+ 𝑛𝑅𝑇𝐶 ln

𝑉2

𝑉1
 

= −𝑛𝑅 ln
𝑉2

𝑉1
(𝑇𝐻 − 𝑇𝐶) 

Carnot efficiency, 

∈𝑟𝑒𝑣= (
|𝑤|

|𝑞𝐻|
)

𝑟𝑒𝑣

 

                        =
𝑛𝑅 ln

𝑉2

𝑉1
(𝑇𝐻 − 𝑇𝐶)

𝑛𝑅𝑇𝐻 𝑙𝑛 
𝑉2

𝑉1

 

      =
𝑇𝐻 − 𝑇𝐶

𝑇𝐻
 

∈𝑟𝑒𝑣= 1 −
𝑇𝐶

𝑇𝐻
… … … . . (2) 

Equation (2) gives the efficiency of any reversible engine working between the temperature of the 

source and the sink. Efficiency depends only on the temperature difference (𝑇𝐻 − 𝑇𝐶) and is 

independent of the nature of the working substance. 
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For ∈= 1, 

     either 𝑇𝐻  →  ∞  

or 𝑇𝐶 → 0,  

both can't be realized in practice. 

Therefore, heat can't be transformed completely into work. 

From equations (1) and (2), 

1 −
|𝑞𝐶|

|𝑞𝐻|
= 1 −

𝑇𝐶

𝑇𝐻

 

𝑜𝑟,
|𝑞𝐶|

|𝑞𝐻|
=

𝑇𝐶

𝑇𝐻

 

𝑜𝑟,
|𝑞𝐶|

𝑇𝐶

=
|𝑞𝐻|

𝑇𝐻

 

Concept of Entropy, S  

The first law led to the introduction of the internal energy U. The second law uses another state 

function entropy S to identify the direction of a spontaneous change. 

We know that in a Carnot cycle, 

𝑞𝐻

𝑇𝐻

=
−𝑞𝐶

𝑇𝐻

 

⇒
𝑞𝐻

𝑇𝐻

+
𝑞𝐶

𝑇𝐻

= 0 

where 𝑞𝐻 is the heat received from the source at temperature  TH and 𝑞𝐶  is the heat delivered to 

the sink at temperature  TC. 

In a reversible Carnot cycle, 

∮
𝑑𝑞𝑟𝑒𝑣

𝑇
 =  

𝑞𝐻

𝑇𝐻

+
𝑞𝐶

𝑇𝐻

 =  0   

Now, any reversible cycle can be approximated as a collection of Carnot cycles (Figure 1).  

As shown in the figure 1, a reversible cyclic process represented by  𝑝𝑏𝑐𝑟𝑎 consists of large 

numbers of infinitesimal isothermals followed by adiabates. Let us consider the Carnot cycle 𝑝𝑞𝑟𝑠, 

where 𝑝𝑞 and 𝑟𝑠 are the isotherms with heat changes 𝑑𝑞 𝐻
′   at  𝑇𝐻

′  and 𝑑𝑞 𝐶
′   at  𝑇𝐶

′  respectively.  

 Heat changes along the adiabats 𝑞𝑟 and 𝑝𝑠 are zero: 

𝑑𝑞𝐻
′

𝑇𝐻
′ +

𝑑𝑞𝐶
′

𝑇𝐶
′ = 0 
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                                                                         Figure 1 

For other Carnot cycle, similarly, 

𝑑𝑞𝐻
′′

𝑇𝐻
′′ +

𝑑𝑞𝐶
′′

𝑇𝐶
′′ = 0 

and so on. Hence, for the complete reversible cycle, 

∑
𝑑𝑞𝑟𝑒𝑣

𝑇
= 0 

The collection of Carnot cycles considered in the reversible cycle 𝑝𝑏𝑐𝑟𝑎 can not cover the 

complete cycle, but if we consider infinite number of cycles, the isothermals of the Carnot cycles 

match the overall cycle exactly, and the sum becomes an integral 

∮
𝑑𝑞𝑟𝑒𝑣

𝑇
= 0 

Since the integral of  
𝑑𝑞𝑟𝑒𝑣

𝑇
  in a thermodynamic cycle is zero, it indicates that 

𝑑𝑞𝑟𝑒𝑣

𝑇
  is the 

differential of a state function. This state function is called entropy 𝑆. So, its differential is given 

by   

𝑑𝑆 =
𝑑𝑞𝑟𝑒𝑣

𝑇
 

So, 

∮ 𝑑𝑆 = 0 
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The thermodynamic definition of entropy 

The defining equation of entropy is 

𝑑𝑆 =
𝑑𝑞𝑟𝑒𝑣

𝑇
 

This equation is applicable only for a reversible process in a closed system. 

The entropy change on going from state 1 to state 2 during a process equals to 

∆𝑆 = 𝑆2 − 𝑆1 = ∫
𝑑𝑞𝑟𝑒𝑣

𝑇

2

1

 

Entropy is an extensive state function and 𝑑𝑆 is an exact differential. The unit is 𝐽𝐾−1. 

 

Entropy change in reversible (non-cyclic) processes 

Reversible processes are finely balanced changes in which the system is in equilibrium with its 

surroundings at every stage. Each infinitesimal step along a reversible path occurs without 

dispersing energy chaotically and hence without increasing the entropy. Therefore, reversible 

processes don't generate entropy. This is justified in the following discussions. 

In a reversible process, any heat flow between system and surroundings must occur with 

no finite temperature difference. Let 𝑑𝑞𝑟𝑒𝑣 be the heat flow into the system from the surroundings 

during an infinitesimal change of the reversible process. In a reversible process, heat absorbed by 

the process is exactly equal to that lost by the surroundings. So, the corresponding heat flow into 

the surroundings is  −𝑑𝑞𝑟𝑒𝑣. 

∴ 𝑑𝑆𝑠𝑦𝑠 =
𝑑𝑞𝑟𝑒𝑣

𝑇𝑠𝑦𝑠
 

And entropy change in the surroundings is given by  

𝑑𝑆𝑠𝑢𝑟𝑟 = −
𝑑𝑞𝑟𝑒𝑣

𝑇𝑠𝑢𝑟𝑟
 

Therefore, total entropy change is  

𝑑𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑑𝑆𝑠𝑦𝑠 + 𝑑𝑆𝑠𝑢𝑟𝑟 

             =
𝑑𝑞𝑟𝑒𝑣

𝑇𝑠𝑦𝑠
−

𝑑𝑞𝑟𝑒𝑣

𝑇𝑠𝑢𝑟𝑟
 

                                                                      = 0   [𝑎𝑠 𝑇𝑠𝑦𝑠 = 𝑇𝑠𝑢𝑟𝑟] 
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(i) Entropy change in a reversible isothermal expansion of a perfect gas: 

Let us consider  𝑛 mol of an ideal gas undergoing reversible and isothermal expansion 

from V1 to V2. Entropy change is given by,  

∆𝑆𝑠𝑦𝑠 = ∫
𝑑𝑞𝑟𝑒𝑣

𝑇
=

1

𝑇
∫ 𝑑𝑞𝑟𝑒𝑣

2

1

2

1

=
𝑞𝑟𝑒𝑣

𝑇
 

For isothermal change, ∆𝑈 = 0 

From 1st law, 

∆𝑈 = 0 = 𝑞𝑟𝑒𝑣 +  𝑤𝑟𝑒𝑣 

⇒ 𝑞𝑟𝑒𝑣 = − 𝑤𝑟𝑒𝑣 

Now, 

𝑤𝑟𝑒𝑣 = −𝑛𝑅𝑇𝑙𝑛
𝑉2

𝑉1
 

∴ 𝑞𝑟𝑒𝑣 = +𝑛𝑅𝑇𝑙𝑛
𝑉2

𝑉1
 

∴ ∆𝑆𝑠𝑦𝑠 =
𝑞𝑟𝑒𝑣

𝑇
= 𝑛𝑅𝑙𝑛

𝑉2

𝑉1
 

Now, 𝑝1𝑉1 = 𝑝2𝑉2 

∴ ∆𝑆𝑠𝑦𝑠 = 𝑛𝑅𝑙𝑛
𝑉2

𝑉1
= 𝑛𝑅𝑙𝑛

𝑝1

𝑝2
 

Since the surroundings loses exactly equivalent amount of heat, the corresponding heat flow into 

the surroundings is  −𝑞𝑟𝑒𝑣 and its entropy change is 

∆𝑆𝑠𝑢𝑟𝑟 = −
𝑞𝑟𝑒𝑣

𝑇
= −𝑛𝑅𝑙𝑛

𝑉2

𝑉1
 

Therefore, total entropy change is  

∆𝑆𝑡𝑜𝑡𝑎𝑙 = ∆𝑆𝑠𝑦𝑠 + ∆𝑆𝑠𝑢𝑟𝑟 = 𝑛𝑅𝑙𝑛
𝑉2

𝑉1
− 𝑛𝑅𝑙𝑛

𝑉2

𝑉1
= 0 

Prob: Calculate the entropy change of a system containing a perfect gas when 1.00 mol of the 

gas doubles its volume at any temperature. 

Soln:  Here, 𝑉2 = 2𝑉1 ⇒
𝑉2

𝑉1
= 2 

∴ ∆𝑆𝑠𝑦𝑠 = 2.303𝑛𝑅 𝑙𝑜𝑔
𝑉2

𝑉1
= 2.303 × 1 𝑚𝑜𝑙 × 8.314 𝐽𝐾−1𝑚𝑜𝑙−1 × 𝑙𝑜𝑔2 = 5.67 𝐽𝐾−1 
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Prob: Calculate the change in entropy of the system when the pressure of a perfect gas is changed 

isothermally from 5 𝑎𝑡𝑚 to 10 𝑎𝑡𝑚. 

Prob: Calculate the entropy change when Ar at 298 K, 100 atm in a container of volume 500 𝑐𝑚3 

is allowed to expand to 1000 𝑐𝑚3. 

(ii) Entropy change of phase transition at the transition temperature 

When a substance changes its phase, a change in the degree of molecular order occurs. Therefore, 

a phase transition always occurs with a change in entropy. e.g. when a substance vaporizes, a 

compact condensed phase changes into a widely dispersed gas, as a result the entropy of the 

substance increases considerably. The entropy of a solid substance increases when it melts to 

liquid. 

At the transition temperature, any transfer of heat between the system and its surrounding 

is reversible because the two phases in the system are in equilibrium. 

At constant temperature, 𝑇𝑡𝑟𝑠, 

∆𝑆𝑠𝑦𝑠 = ∫
𝑑𝑞𝑟𝑒𝑣

𝑇𝑡𝑟𝑠
=

1

𝑇𝑡𝑟𝑠
∫ 𝑑𝑞𝑟𝑒𝑣

2

1

2

1

=
𝑞𝑟𝑒𝑣

𝑇𝑡𝑟𝑠
 

where, 𝑞𝑟𝑒𝑣 is the heat of transition. 

At constant pressure 𝑝, 

𝑞𝑟𝑒𝑣 = 𝑞𝑝 = ∆𝑡𝑟𝑠𝐻 

∴ ∆𝑆𝑠𝑦𝑠 =
∆𝑡𝑟𝑠𝐻

𝑇𝑡𝑟𝑠
 

If the transition is exothermic (∆𝑡𝑟𝑠𝐻 < 0), as in freezing or condensation, the entropy change is 

negative. It is consistent with the system becoming more ordered when a solid is formed from a 

liquid. If the transition is endothermic (∆𝑡𝑟𝑠𝐻 > 0), as in melting, then the entropy change is 

positive, which is consistent with the system becoming more disordered. 

Trouton’s Rule: For a wide range of liquids, standard molar entropy of vaporization is about 85 

𝐽𝐾−1𝑚𝑜𝑙−1. This empirical observation is called Trouton’s Rule. 

The explanation for this rule is that a comparable amount of disorder is generated when any liquid 

evaporates and becomes a gas.  

Water is an exception to Trouton's rule. Standard molar entropy of vaporization of water is 

109.1 𝐽𝐾−1𝑚𝑜𝑙−1. Due to the presence of hydrogen bonding, molecules of liquid water are less 
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random than other liquids. As a result, entropy of the liquid water is less than other liquid. 

Therefore, vaporization entropy (= entropy of vapour phase - entropy of liquid phase) is higher. 

Prob: Predict the standard molar enthalpy of vaporisation of bromine given that it boils at 59.2° 

C. 

Soln: Here, transition temperature, 𝑇𝑡𝑟𝑠 = 𝑇𝑏 = 59.2 + 273.15 = 332.4𝐾  

There is no hydrogen bonding in liquid bromine. So, it is safe to use Trouton’s rule. 

∆𝑆𝑠𝑦𝑠 =
∆𝑡𝑟𝑠𝐻

𝑇𝑡𝑟𝑠
= 85 𝐽𝐾−1𝑚𝑜𝑙−1 

            ⇒
∆𝑣𝑎𝑝𝐻

𝑇𝑏
= 85 𝐽𝐾−1𝑚𝑜𝑙−1 

                     ⇒ ∆𝑣𝑎𝑝𝐻 = 85 𝐽𝐾−1𝑚𝑜𝑙−1 × 𝑇𝑏 

                                ⇒ ∆𝑣𝑎𝑝𝐻 = 85 𝐽𝐾−1𝑚𝑜𝑙−1 × 332.4 𝐾 

                 ⇒ ∆𝑣𝑎𝑝𝐻 = 28249.75 𝐽𝑚𝑜𝑙−1 

Entropy change in irreversible processes 

Let us consider an infinitesimally small stage of an irreversible process taking place in a system. 

For this infinitesimal change, the application of the first law of thermodynamics gives 

𝑑𝑈𝑖𝑟𝑟 = 𝑑𝑞𝑖𝑟𝑟 + 𝑑𝑤𝑖𝑟𝑟 

If the same change occurs reversibly, then 

𝑑𝑈𝑟𝑒𝑣 = 𝑑𝑞𝑟𝑒𝑣 + 𝑑𝑤𝑟𝑒𝑣 

Since, internal energy is a state function, for a given change in the state of the system 

𝑑𝑈𝑖𝑟𝑟 = 𝑑𝑈𝑟𝑒𝑣 

Hence, we have 

𝑑𝑞𝑟𝑒𝑣 + 𝑑𝑤𝑟𝑒𝑣 = 𝑑𝑞𝑖𝑟𝑟 + 𝑑𝑤𝑖𝑟𝑟 

We know that |𝑑𝑤𝑟𝑒𝑣| >  |𝑑𝑤𝑖𝑟𝑟|  which means the amount of heat absorbed in a reversible 

process is greater than that in an irreversible process for the same change of state of the system: 

𝑑𝑞𝑟𝑒𝑣 >  𝑑𝑞𝑖𝑟𝑟 

Again,  

𝑑𝑆𝑠𝑦𝑠 =
𝑑𝑞𝑟𝑒𝑣

𝑇
 

⇒ TdS𝑠𝑦𝑠 = 𝑑𝑞𝑟𝑒𝑣 

Therefore,  
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𝑇dS𝑠𝑦𝑠 > 𝑑𝑞𝑖𝑟𝑟 

⇒ dS𝑠𝑦𝑠 >  
𝑑𝑞𝑖𝑟𝑟

𝑇
 

This inequality is known as Clausius inequality. 

For the complete process,  

∆S𝑠𝑦𝑠 >  
𝑞𝑖𝑟𝑟

𝑇
 

Surroundings are like a reservoir of constant volume. At constant volume, heat lost by the 

surroundings 𝑞𝑠𝑢𝑟𝑟 can be equated to internal energy change ∆𝑈𝑠𝑢𝑟𝑟.Now, ∆𝑈𝑠𝑢𝑟𝑟 is a state 

function, so 𝑞𝑠𝑢𝑟𝑟 is same whether the heat lost is reversible or irreversible. So, we can use the 

formula of entropy change in a reversible process to calculate entropy change in the surroundings: 

 

∆S𝑠𝑢𝑟𝑟 =  
𝑞𝑠𝑢𝑟𝑟

𝑇
 

Now, 𝑞𝑠𝑢𝑟𝑟 = −𝑞𝑖𝑟𝑟 

Therefore,  

∆S𝑠𝑢𝑟𝑟 = −
𝑞𝑖𝑟𝑟

𝑇
 

So, the total entropy change 

∆𝑆𝑡𝑜𝑡𝑎𝑙 = ∆𝑆𝑠𝑦𝑠 + ∆𝑆𝑠𝑢𝑟𝑟 = (>  
𝑞𝑖𝑟𝑟

𝑇
) −

𝑞𝑖𝑟𝑟

𝑇
> 0 

Thus, a thermodynamically irreversible process is always accompanied by an increase in entropy 

of the universe, i.e. system and the surroundings. 

Entropy change in irreversible isothermal expansion of a perfect gas 

Let us consider isothermal expansion of a perfect gas from V1 to V2  against zero opposing pressure 

(i.e. free expansion). 

Since entropy is a state function, entropy change in reversible isothermal expansion is same as that 

in an irreversible process. For 𝑛 mole of gas in the system: 

∆𝑆𝑠𝑦𝑠 = 𝑛𝑅𝑙𝑛
𝑉2

𝑉1
 

For, free expansion, there is no opposing force, the work done by the system is zero: 

𝑤 = 0 

Temperature being constant, 𝛥 𝑈 = 0 
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From 1st law,  

∆𝑈 = 0 = 𝑞 + 𝑤 

⇒ 𝑞 = 0 

No heat is exchanged between the system and surroundings, consequently: 

∆𝑆𝑠𝑢𝑟𝑟 = 0 

Total change in entropy in the process: 

∆𝑆𝑡𝑜𝑡𝑎𝑙 = ∆𝑆𝑠𝑦𝑠 + ∆𝑆𝑠𝑢𝑟𝑟 = 𝑛𝑅𝑙𝑛
𝑉2

𝑉1
 

Since, V2 > V1, 𝑙𝑛
𝑉2

𝑉1
> 0 which means ∆𝑆𝑡𝑜𝑡𝑎𝑙 > 0    

Thus, irreversible isothermal expansion of an ideal gas is accompanied by an increase in entropy 

of the system and its surroundings.  

Second Law of Thermodynamics: The entropy of an isolated system increases in the course of a 

spontaneous change: 

∆𝑆𝑡𝑜𝑡𝑎𝑙 > 0 

where ∆𝑆𝑡𝑜𝑡𝑎𝑙 is the total entropy of the system and its surroundings.  

i.e. ∆𝑆𝑡𝑜𝑡𝑎𝑙 = ∆𝑆𝑠𝑦𝑠 + ∆𝑆𝑠𝑢𝑟𝑟 > 0 

The second law in terms of entropy tells us that thermodynamically irreversible processes being 

spontaneous, must be accompanied by an increase in entropy. In other words, irreversible 

processes generated entropy. Since all processes in nature occur spontaneously, i.e. irreversibly, it 

follows that the entropy of the universe is increasing continuously. 

Entropy, spontaneity and equilibrium 

The second law of thermodynamics states that the total entropy of the universe — that is, the sum 

of the entropy changes of the system and the surroundings — always increases for a spontaneous 

process: 

∆𝑆𝑡𝑜𝑡𝑎𝑙 = ∆𝑆𝑠𝑦𝑠 + ∆𝑆𝑠𝑢𝑟𝑟 > 0 

Thus, a process is spontaneous if it results in an increase in the entropy of the universe. The system 

continues to change in this direction until equilibrium is attained. At equilibrium, the entropy of 

the universe becomes constant (maximum value), and hence: 

∆𝑆𝑡𝑜𝑡𝑎𝑙 = 0 
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Combined form of the first and second law of thermodynamics: 

For an infinitesimally small change in the state of a system. The first law gives 

𝑑𝑈 = 𝑑𝑞 + 𝑑𝑤 

If the process is reversible and the system does only P-V work then 

𝑑𝑤 = −𝑝𝑑𝑉 

The first law becomes 

𝑑𝑈 = 𝑑𝑞𝑟𝑒𝑣 − 𝑝𝑑𝑉 

From the second law, 

𝑑𝑆 =
𝑑𝑞𝑟𝑒𝑣

𝑇
 

⇒ TdS = 𝑑𝑞𝑟𝑒𝑣 

Combining these relations 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 … … … (1) 

Equation (1) is the combined form of the first and second law of thermodynamics. This is a 

fundamental equation of thermodynamics.  

Also, from the definition of enthalpy 𝐻 = 𝑈 + 𝑝𝑉 

We obtain 

𝑑𝐻 = 𝑑𝑈 + 𝑝𝑑𝑉 + 𝑉𝑑𝑝 

Substituting the value of 𝑑𝑈 from equation (1), we get 

𝑑𝐻 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 + 𝑝𝑑𝑉 + 𝑉𝑑𝑝                                         (𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑑𝑉𝑑𝑝) 

Or,  

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑝 … … … … . (2) 

This is another fundamental equation of thermodynamics.  

 

Molecular interpretation and statistical interpretation of entropy 

Entropy is a measure of molecular disorder of the system. The more the randomness in a system 

greater is the entropy. Of the three states of matter, molecules in the gaseous state are more 

disordered than those in the liquid state, while molecules in the solid state are the least disordered. 

Thus, the entropy in the three states is in the following order: 

𝑆𝑔 ≫  𝑆𝑙  >  𝑆𝑠 
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All spontaneous processes are accompanied by increase in entropy. In other words, "disorder" of 

the system increases in a spontaneous process. Therefore, increase of entropy implies increase in 

molecular disorder. 

Disordered states naturally have higher probabilities than ordered states. For example, in the 

mixing of two gases, the disordered mixed states are far more probable than the ordered, unmixed 

states. A spontaneous change, therefore, invariably takes place from a less probable state to a more 

probable state. Thus, entropy is related to thermodynamic probability 𝑊 by the Boltzmann 

equation 

𝑆 = 𝑘𝑙𝑛𝑊 

 where 𝑘 is the Boltzmann constant. 

When a given quantity of energy stored at high temperature in a system, the system has a lower 

entropy than the same quantity of energy stored at a lower temperature. Mathematically, 

𝑑𝑆 =
𝑑𝑞𝑟𝑒𝑣

𝑇
 

The molecules in a system at higher temperatures are highly disordered. A small additional transfer 

of energy as heat will result in a relatively small additional disorder. In contrast, molecules in a 

system at low temperature are highly ordered, and the transfer of the same quantity of energy as 

heat will increase disorderliness in the molecules to a great extent. Molecular interpretation, 

therefore suggests that change in entropy should be inversely proportional to the temp° at which 

the transformation takes place. 

Variation of Entropy with temperature 

For a reversible process in a closed system, the defining equation of entropy is 

𝑑𝑆 =
𝑑𝑞𝑟𝑒𝑣

𝑇
 

Now, when the state of a system is changed by heating it from initial state at temperature 𝑇1 to the 

final state at temperature 𝑇2 , the entropy change in the system can be obtained by integrating: 

∫ 𝑑𝑆
𝑇2

𝑇1

= ∫
𝑑𝑞𝑟𝑒𝑣

𝑇

𝑇2

𝑇1

 

⇒ 𝑆(𝑇2) − 𝑆(𝑇1) = ∫
𝑑𝑞𝑟𝑒𝑣

𝑇
… … … … (1)

𝑇2

𝑇1
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When the process occurs at constant pressure 

𝐶𝑝 = (
𝑑𝑞𝑟𝑒𝑣

𝑑𝑇
)

𝑝
 

⇒ 𝑑𝑞𝑟𝑒𝑣 = 𝐶𝑝𝑑𝑇 

Equation (1) becomes,  

𝑆(𝑇2) = 𝑆(𝑇1) + ∫ 𝐶𝑝

𝑑𝑇

𝑇
… … … … (2)

𝑇2

𝑇1

 

Similarly, when the process occurs at constant volume, 

𝑆(𝑇2) = 𝑆(𝑇1) + ∫ 𝐶𝑉

𝑑𝑇

𝑇
… … … … (3)

𝑇2

𝑇1

 

When 𝐶𝑝 and 𝐶𝑉 are independent of temperature in the temperature range of interest, we obtain 

𝑆(𝑇2) = 𝑆(𝑇1) + 𝐶𝑝𝑙𝑛
𝑇2

𝑇1
… … … … . . (4) 

𝑜𝑟, ∆𝑆 = 𝐶𝑝𝑙𝑛
𝑇2

𝑇1
… … … … … … … … . . (5) 

𝑆(𝑇2) = 𝑆(𝑇1) + 𝐶𝑉𝑙𝑛
𝑇2

𝑇1
… … … … . . (6) 

𝑜𝑟, ∆𝑆 = 𝐶𝑉𝑙𝑛
𝑇2

𝑇1
… … … … . . … … … . . (7) 

Prob: One mole of an ideal gas is heated from 100 K to 300 K. Calculate ∆𝑆 if 

(a) the volume is kept constant 

(b) the pressure is kept constant 

Assume that 𝐶𝑉 = 1.5 𝑅. 

 

Entropy change in an ideal gas when T and V are the two variables 

 From thermodynamic definition, if an ideal gas absorbs a small amount of heat 𝑑𝑞𝑟𝑒𝑣 reversibly 

from the surroundings at 𝑇, then entropy change is  

𝑑𝑆 =
𝑑𝑞𝑟𝑒𝑣

𝑇
 

From 1st law,  

𝑑𝑈 = 𝑑𝑞𝑟𝑒𝑣 + 𝑑𝑤 

where 𝑑𝑤 is the p-V work of expansion given by 
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𝑑𝑤 = −𝑝𝑑𝑉 

And, from the definition of heat capacity, 

𝐶𝑉 = (
𝑑𝑈

𝑑𝑇
)

𝑉
 

⇒ 𝑑𝑈 = 𝐶𝑉𝑑𝑇 

Therefore, the first law becomes, 

𝑑𝑞𝑟𝑒𝑣 = 𝑑𝑈 − 𝑑𝑤 

⇒ 𝑑𝑞𝑟𝑒𝑣 = 𝐶𝑉𝑑𝑇 + 𝑝𝑑𝑉 

 ⇒
𝑑𝑞𝑟𝑒𝑣

𝑇
= 𝐶𝑉

𝑑𝑇

𝑇
+

𝑝

𝑇
𝑑𝑉 

                                                        ⇒ 𝑑𝑆 = 𝐶𝑉

𝑑𝑇

𝑇
+ 𝑛𝑅

𝑑𝑉

𝑉
             [𝑝𝑉 = 𝑛𝑅𝑇, ∴

𝑝

𝑇
=

𝑛𝑅

𝑉
]  

For a finite change of state of the system, integrating the above equation between the limits of the 

initial state 1 and the final state 2 assuming 𝐶𝑉 to be constant within the temperature 𝑇1 and 𝑇2, we 

have, 

           ∫ 𝑑𝑆 = 𝐶𝑉 ∫
𝑑𝑇

𝑇

𝑇2

𝑇1

2

1

+ 𝑛𝑅 ∫
𝑑𝑉

𝑉

𝑉2

𝑉1

 

         ⇒ S2 − S1 = 𝐶𝑉𝑙𝑛
𝑇2

𝑇1
+ 𝑛𝑅𝑙𝑛

𝑉2

𝑉1
 

⇒ ∆𝑆 = 𝐶𝑉𝑙𝑛
𝑇2

𝑇1
+ 𝑛𝑅𝑙𝑛

𝑉2

𝑉1
 

Prob: Calculate the entropy change, when 1 mol Ar at 25°C and 100 atm in a container of volume 

500 𝑐𝑚3 is allowed to expand to 1000 𝑐𝑚3 and is simultaneously heated to 100°C (Cv,m = 12.47 

𝐽𝐾−1𝑚𝑜𝑙−1). 

Entropy change in an ideal gas when p and T are the two variables 

From thermodynamic definition, if an ideal gas absorbs a small amount of heat 𝑑𝑞𝑟𝑒𝑣 reversibly 

from the surroundings at 𝑇, then entropy change is  

𝑑𝑆 =
𝑑𝑞𝑟𝑒𝑣

𝑇
 

From 1st law,  

𝑑𝑈 = 𝑑𝑞𝑟𝑒𝑣 + 𝑑𝑤 

where 𝑑𝑤 is the p-V work of expansion given by 

𝑑𝑤 = −𝑝𝑑𝑉 
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Therefore, the first law becomes, 

𝑑𝑞𝑟𝑒𝑣 = 𝑑𝑈 − 𝑑𝑤 

                         ⇒ 𝑑𝑞𝑟𝑒𝑣 = 𝑑𝑈 + 𝑝𝑑𝑉 … … … … . . (1) 

From the definition of enthalpy, 

     𝐻 = 𝑈 + 𝑝𝑉 

⇒ U = H − pV 

Now, differentiating, we get 

                                                           𝑑𝑈 = 𝑑𝐻 − 𝑝𝑑𝑉 − 𝑉𝑑𝑝 … … … … . . (2) 

From equations (1) and (2),  

                                𝑑𝑞𝑟𝑒𝑣 = 𝑑𝐻 − 𝑝𝑑𝑉 − 𝑉𝑑𝑝 + 𝑝𝑑𝑉 

                            ⇒ 𝑑𝑞𝑟𝑒𝑣 = 𝑑𝐻 − 𝑉𝑑𝑝 … … … … … (3) 

And, from the definition of heat capacity, 

𝐶𝑝 = (
𝑑𝐻

𝑑𝑇
)

𝑝
 

⇒ 𝑑𝐻 = 𝐶𝑝𝑑𝑇 

Putting this equation (3) becomes, 

𝑑𝑞𝑟𝑒𝑣 = 𝐶𝑝𝑑𝑇 − 𝑉𝑑𝑝 

⇒
𝑑𝑞𝑟𝑒𝑣

𝑇
= 𝐶𝑝

𝑑𝑇

𝑇
−

𝑉

𝑇
𝑑𝑝 

                                                        ⇒ 𝑑𝑆 = 𝐶𝑝

𝑑𝑇

𝑇
− 𝑛𝑅

𝑑𝑝

𝑝
             [𝑝𝑉 = 𝑛𝑅𝑇, ∴

𝑉

𝑇
=

𝑛𝑅

𝑝
]  

For a finite change of state of the system, integrating the above equation between the limits of the 

initial state 1 and the final state 2 assuming 𝐶𝑝 to be constant within the temperature 𝑇1 and 𝑇2, we 

have, 

           ∫ 𝑑𝑆 = 𝐶𝑝 ∫
𝑑𝑇

𝑇

𝑇2

𝑇1

2

1

− 𝑛𝑅 ∫
𝑑𝑝

𝑝

𝑝2

𝑝1

 

         ⇒ S2 − S1 = 𝐶𝑝𝑙𝑛
𝑇2

𝑇1
− 𝑛𝑅𝑙𝑛

𝑝2

𝑝1
 

⇒ ∆𝑆 = 𝐶𝑝𝑙𝑛
𝑇2

𝑇1
− 𝑛𝑅𝑙𝑛

𝑝2

𝑝1
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Third Law of Thermodynamics 

 Nernst Heat Theorem   

 Nernst heat theorem is stated as:  

The entropy change accompanying any physical or chemical transformation approaches zero as 

the temperature approaches zero: ∆𝑆 → 0 as 𝑇 → 0 provided all the substances involved are 

perfectly ordered. 

Third Law of Thermodynamics 

Let us consider a process involving conversion of solid substance. For example,  

Sulphur(β) → Sulphur(α). 

According to Nernst heat theorem, the entropy change ΔS for this conversion is zero at absolute 

zero.  

∴ ΔS = S(α) – S(β) = 0 

                                                                     ⇒ S(α) = S(β) 

Thus, absolute entropies of the product element and the reactant element in the solid state are same. 

If we arbitrarily assign zero values to the entropies of elements in their perfect crystalline form, 

then all compounds with perfectly crystalline structure will also have zero entropy at T=0. Because, 

the entropy change associated with the formation of the compounds and entropies of elements in 

their perfect crystalline form are zero at T=0. Thus. Planck stated the third law as: 

        “All perfect crystals have zero entropy at absolute zero temperature (T=0).” 

Determination of Absolute Entropies 

Variation of entropy of a substance with temperature at constant pressure is given by 

𝑑𝑆 =
𝐶𝑃

𝑇
𝑑𝑇 … … … … … … … … … … (𝑖) 

By integration of the entropy term from 𝑇 = 0 𝐾  to some temperature 𝑇 , we get 

∫ 𝑑𝑆
𝑆𝑇

𝑆0

= ∫
𝐶𝑃

𝑇
𝑑𝑇

𝑇

0

 

⇒ 𝑆𝑇 − 𝑆0 =  ∫
𝐶𝑃

𝑇
𝑑𝑇

𝑇

0

… … … … … … (𝑖𝑖) 

where ST and So are entropy of the system at T K and 0 K, respectively. 

According to third law, So = 0, so 
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𝑆𝑇 =  ∫
𝐶𝑃

𝑇
𝑑𝑇 =

𝑇

0

∫ 𝐶𝑃

𝑇

0

𝑑𝑙𝑛𝑇 … … … . (𝑖𝑖𝑖) 

where ST is called the Third-law entropy or absolute entropy at temperature T.  

Thus, entropies reported on the basis that 𝑆(0) = 0  are called Third-law entropies. When the 

substance is in its standard state at the temperature of interest T, entropy is called the ‘standard 

Third-law entropy’ denoted by ST°.  

Third-law entropy or Absolute Entropy of a Solid 

From equation (iii), it is clear that the absolute entropy ST of a solid can be determined graphically 

by plotting CP/T against T or CP against lnT.  Area under the curve between T = o and the 

temperature of interest T (Figure 1) gives an estimate of ST. For generation of the plot, CP of the 

solid at various temperatures between T = o and the temperature of interest T need to be measured. 

Since it is impossible to attain absolute zero temperature, heat capacities are measured up to a 

minimum temperature (Tmin) as low as 10 K to 15 K. Below this temperature (Tmin), CP is calculated 

using the Debye T-cubed law: 𝐶𝑃 = 𝑎𝑇3 where a is an empirical constant. Thus, absolute entropy 

of a solid can be determined using the integrals: 

𝑆𝑇 = ∫
𝐶𝑃

𝑇

𝑇𝑚𝑖𝑛

0𝐾

𝑑𝑇 + ∫
𝐶𝑃

𝑇

𝑇

𝑇𝑚𝑖𝑛

𝑑𝑇 … … … … … (𝑖𝑣) 

Here, the first integral is evaluated using Debye T-cubed law and the second integral is evaluated 

from experimental determination of heat capacities. 

 

 

Figure 1: Schematic presentation of plot of CP/T versus T 
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Third-law entropy or Absolute Entropy of a liquid 

For the determination of absolute entropy ST of a substance at a temperature of interest, one must 

take into account all the entropy changes that the substance has to undergo to reach the state at the 

temperature of interest from the absolute zero. Absolute entropy of a liquid at the temperature T, 

can be determined by the summation of entropy changes in the following three stages: 

(1) Heating of the solid substance from absolute zero (0 K) up to its melting point Tm. 

(2) Fusion of the solid to liquid at its melting point Tm. 

(3) Heating of the liquid from its melting point Tm up to the temperature of interest T. 

 Considering the three stages, integrals can be framed as     

𝑆𝑇 = ∫
𝐶𝑃(𝑠)

𝑇
𝑑𝑇

𝑇𝑚

0𝐾

+
∆𝑓𝑢𝑠𝐻

𝑇𝑚
+ ∫

𝐶𝑃(𝑙)

𝑇
𝑑𝑇

𝑇

𝑇𝑚

… … … . (𝑣𝑖𝑖) 

where ΔfusH is the enthalpy of fusion of the solid state of the substance. Thus, determination of 

absolute entropy of a liquid necessitates evaluation of three integrals. 

Third-law entropy or Absolute Entropy of a gas at 25°C 

Absolute entropy of a gas at 25°C can be determined by adding up all the entropy changes 

associated with the substance while bringing it from absolute zero to its gaseous state at 298 K. 

ntropy changes in the following processes are considered: 

(1) Heating of the crystalline solid from absolute zero to a minimum temperature Tmin, where 0 < 

Tmin < 15 K. In this temperature range, entropy change ΔS1 is evaluated using Debye T-cubed 

law: 

∆𝑆1 = ∫ 𝑎𝑇3
𝑇𝑚𝑖𝑛

0

𝑑𝑇

𝑇
=

1

3
𝑎𝑇𝑚𝑖𝑛

3  

(2) Fusion of the solid into its liquid form at its melting point Tm brings an entropy change of ΔS2 

given by 

∆𝑆2 =
∆𝑓𝑢𝑠𝐻

𝑇𝑚
 

∆𝑓𝑢𝑠𝐻 is the enthalpy of fusion of the substance. 

(3) Heating of the liquid from its melting point Tm to its boiling point Tb. Associated entropy 

change is 

∆𝑆3 = ∫
𝐶𝑃(𝑙)

𝑇

𝑇𝑏

𝑇𝑚

𝑑𝑇 
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𝐶𝑃(𝑙) is the heat capacity of the substance in the liquid state. 

(4) Vaporisation of the liquid at Tb leads to an entropy change of 

∆𝑆4 =
∆𝑣𝑎𝑝𝐻

𝑇𝑏
 

∆𝑣𝑎𝑝𝐻 is the enthalpy of vaporization of the liquid. 

(5) Heating the gas from Tb to 298 K. Entropy change involved in this process  

∆𝑆5 = ∫
𝐶𝑃(𝑔)

𝑇

298𝐾

𝑇𝑏

𝑑𝑇 

where 𝐶𝑃(𝑔) is the heat capacity of the substance in the gaseous state. 

So, absolute entropy of the gas at 298K is given by 

𝑆𝑇 = ∆𝑆1 + ∆𝑆2 + ∆𝑆3 + ∆𝑆4 + ∆𝑆5      

Residual entropy  

Absolute entropies or Third-law entropies are determined assuming 𝑆(0) = 0. Entropies are also 

calculated using Boltzmann equation 

𝑆 = 𝑘𝑙𝑛𝑊 

 where 𝑘 is the Boltzmann constant. In many cases, calculated entropies and Third law entropies 

are found to be same, but in some cases, Third-law entropies are less than the calculated entropies. 

One reason cited for this discrepancy is that some disorder is present in the solid state even at 

absolute zero.  

Entropy of a substance at T=0 is greater than zero. The value of entropy of a substance at 

absolute zero is called residual entropy. 

     The origin of residual entropy in a crystal at 0 K is due to alternative arrangements of molecules 

possible in the solid. Let us consider a crystal composed of AB molecules, where A and B are 

similar atoms (such as CO). There may be so little energy difference between …AB AB AB AB…., 

…AB BA BA AB…., and other arrangements that the molecules adopt the orientations AB and 

BA at random in the solid.  

 We can calculate the entropy arising from residual disorder by using the Boltzmann 

equation 

𝑆 = 𝑘𝑙𝑛𝑊 

We suppose that the two orientations are equally probable, and that the sample consists of 𝑁 

molecules. Because the same energy can be achieved in 2𝑁 different ways,  
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𝑊 = 2𝑁 

∴ 𝑆 = 𝑘𝑙𝑛𝑊 = 𝑘𝑙𝑛2𝑁 = 𝑁𝑘𝑙𝑛2 = 𝑛𝑅𝑙𝑛2 

Residual molar entropy of solids composed of molecules that can adopt either of two orientations 

is given by 𝑆𝑚 = 𝑅𝑙𝑛2. If 𝑠 orientations are possible, the residual molar entropy will be 

𝑆𝑚 = 𝑅𝑙𝑛𝑠 

Prob 1: Heat capacity at constant volume for uranium metal is 3.04 J K-1 mol-1. Calculate the 

absolute entropy of the metal at 20 K. 

Soln: At T= 20 K, Cp = Cv = 3.04 J K-1 mol-1.   

At low temperatures (0 K < T < 20 K), applying Debye T-cubed law, 𝐶𝑃 = 𝑎𝑇3.  

𝑎 =
𝐶𝑃

𝑇3
=

3.04 J 𝐾−1𝑚𝑜𝑙−1

(20𝐾)3
= 38.03 × 10−5𝐽 𝐾−4 𝑚𝑜𝑙−1 

Absolute entropy is given by  

𝑆𝑇 =  ∫
𝐶𝑃

𝑇
𝑑𝑇 = ∫

𝑎𝑇3

𝑇

𝑇

0

𝑇

0

𝑑𝑇 = 𝑎 ∫ 𝑇2𝑑𝑇 =
𝑎

3

𝑇

0

𝑇3 

      =
38.04 J 𝐾−4𝑚𝑜𝑙−1

3
(20 𝐾)3 = 1.01 𝐽𝐾−1𝑚𝑜𝑙−1 

Prob 2: How did Planck state the third law of thermodynamics? 

Soln : Planck stated the third law as: “All perfect crystals have zero entropy at absolute zero 

temperature (T=0).” 

Prob 3: Heat capacity of a gas at 1 atm pressure is 50.0 J K-1 mol-1. Calculate the entropy change 

for heating the gas from its boiling point (300 K) to 350 K. 

Soln: Here we use the integral  

∆𝑆 = ∫
𝐶𝑃(𝑔)

𝑇

𝑇

𝑇𝑏

𝑑𝑇 

    = ∫
50.0

𝑇

350

300

𝑑𝑇 

= 50.0 𝑙𝑛
350

300
 

         = 50 × 2.303 log
7

6
 

            = 7.71 𝐽𝐾−1𝑚𝑜𝑙−1  

Prob 4: Calculate residual molar entropy for the solids (i) CO and  (ii) FClO3 
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MODEL QUESTIONS 

1. State the Nernst heat theorem. How does it lead to the proposal of third law of 

thermodynamics? 

2. State and explain the third law of thermodynamics. 

3. Discuss how the absolute entropy of a solid can be determined with the help of third law of 

thermodynamics? 

4. Discuss how entropy of a pure liquid can be determined with the help of third law. 

5. Evaluate theoretically the absolute entropy of a gas above its boiling point using third law. 

Write all the steps involved precisely. 

6. Mention one limitation of third law. 

 


