
Systems with Variable Composition 

In a closed system, there can be no change in the mass of the system. The change of state of such 

a system can be considered to be due to change in T and P only. 

In an open system containing two or more components, there can be change in the number of mole 

of various components due to interchange of matter with the surroundings or to irreversible 

chemical reaction or to irreversible interphase transport of matter within the system. The 

thermodynamic properties U, H, S, A and G are extensive properties. Therefore, they may be 

written as 

𝑈 = 𝑓(𝑇, 𝑝, 𝑛1, 𝑛2, … … … . , 𝑛𝑗) 

𝐺 = 𝑓(𝑇, 𝑝, 𝑛1, 𝑛2, … … … . , 𝑛𝑗) 

𝑉 = 𝑓(𝑇, 𝑝, 𝑛1, 𝑛2, … … … . , 𝑛𝑗) 

𝐻 = 𝑓(𝑇, 𝑝, 𝑛1, 𝑛2, … … … . , 𝑛𝑗) 

Partial Molar quantities: For any thermodynamic property X, of an open system, the partial 

molar property 𝑋𝑗̅ of a substance j is defined as 

𝑋𝑗̅ = (
𝛿𝑋

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′

… … … … (1) 

where 𝑛𝑗  is the number of moles of j and 𝑛′ signifies that the amounts of all other substances 

present are constant. 

In other words, any partial molar property 𝑋𝑗̅ of a substance j  in a mixture is the change in the 

property X on addition of 1 mol of  j to a large excess of the mixture at constant T and P. 

Partial molar properties are intensive properties. Corresponding to any extensive property U, V, S, 

H, A, G, etc, there are partial molar properties  𝑈𝑗̅, 𝑉𝑗̅, 𝑆𝑗̅, 𝐻𝑗
̅̅ ̅, 𝐴𝑗̅, 𝐺𝑗̅,  defined as 

𝑈𝑗̅ = (
𝛿𝑈

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′

 

𝑉𝑗̅ = (
𝛿𝑉

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′

 

𝑆𝑗̅ = (
𝛿𝑆

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′

 

𝐻𝑗
̅̅ ̅ = (

𝛿𝐻

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′

 



𝐴𝑗̅ = (
𝛿𝐴

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′

 

𝐺𝑗̅ = (
𝛿𝐺

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′

 

Partial Molar Volume: The partial molar volume of a substance j in a mixture is the change in 

volume on the addition of 1 mol of j to a large excess of the mixture at constant T and P. 

Mathematically,  

𝑉𝑗̅ = (
𝛿𝑉

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′

 

and 𝑛′ signifies that the amounts of all other substances present are constant. 

The definition implies that when the composition of the mixture is changed by the addition of 

𝑑𝑛𝐴 of A and 𝑑𝑛𝐵 of B, the total volume of the mixture changes by 

𝑑𝑉 = (
𝛿𝑉

𝛿𝑛𝐴
)

𝑇,𝑝,𝑛𝐵

𝑑𝑛𝐴 + (
𝛿𝑉

𝛿𝑛𝐵
)

𝑇,𝑝,𝑛𝐴

𝑑𝑛𝐵 

                                    ⇒ 𝑑𝑉 = 𝑉𝐴̅𝑑𝑛𝐴 + 𝑉𝐵̅𝑑𝑛𝐵 

When 𝑛𝐴 moles of A and 𝑛𝐵 moles of B are present in a mixture, the total volume V is obtained 

by integrating the above equation given by 

∫ 𝑑𝑉 = 𝑉𝐴
̅̅ ̅ ∫ 𝑑𝑛𝐴 + 𝑉𝐵

̅̅ ̅ ∫ 𝑑𝑛𝐵 

⇒ 𝑉 = 𝑉𝐴̅𝑛𝐴 + 𝑉𝐵̅𝑛𝐵 

where 𝑉𝐴
̅̅ ̅ and 𝑉𝐵

̅̅ ̅ are partial molar volumes of A and B respectively. 

In general, 

𝑉 = ∑ 𝑛𝑗

𝑗

𝑉𝑗̅ 

When 1 mol of H₂O is added to a huge volume of pure water at 25°C, the volume increases by 18 

cm³. Thus, 18 cm³mol⁻¹ is the molar volume of pure water. However, when 1 mol H₂O is added to 

a huge volume of pure ethanol, the volume increases by only 14 cm³. The reason for the difference 

in increase in volume is as follows: The volume occupied by a given number of water molecules 

depends on the identity of the molecules that surround them. In the latter case there is so much 

ethanol present that each H₂O molecule is surrounded by ethanol molecules. The stronger forces 



acting between H₂O and ethanol molecules result in better packing for which the volume increases 

only by 14cm³. The quantity 14 cm³mol⁻¹ is the partial molar volume of water in pure ethanol. 

Prob: At 25°C, the density of a 50% by mass ethanol/water solution is 0.914 𝑔 𝑐𝑚−3. Given that 

the partial molar volume of water in the solution is 47.4 𝑐𝑚3𝑚𝑜𝑙−1, what is the partial molar 

volume of ethanol? 

Fundamental equation of Thermodynamics for an open system:  

Let us consider a one-plane system that is in thermal and mechanical equilibrium but not in 

material equilibrium. 

At any instant during a chemical process in the system, the Gibbs energy is given by 

𝐺 = 𝑓(𝑇, 𝑝, 𝑛1, 𝑛2, … … … . , 𝑛𝑗) … … … … . (1) 

Total differential of (1) is 

𝑑𝐺 = (
𝛿𝐺

𝛿𝑇
)

𝑝,𝑛𝑗

𝑑𝑇 + (
𝛿𝐺

𝛿𝑝
)

𝑇,𝑛𝑗

𝑑𝑝 + (
𝛿𝐺

𝛿𝑛1
)

𝑇,𝑝,𝑛′

𝑑𝑛1 + (
𝛿𝐺

𝛿𝑛2
)

𝑇,𝑝,𝑛′

𝑑𝑛2 + ⋯ ⋯ ⋯ ⋯ (2) 

where 𝑛′ signifies that all the components except the one are kept constant. 

For a reversible process where no change in composition occurs, considering only P−V work, 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 … … … … … … . (3) 

It follows from (3) that 

(
𝛿𝐺

𝛿𝑇
)

𝑝,𝑛𝑗

= −𝑆 … … … … … … … (4𝑎) 

(
𝛿𝐺

𝛿𝑝
)

𝑇,𝑛𝑗

= 𝑉 … … … … … … … . (4𝑏) 

Putting (4a) and (4b) in equation (2), we get 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 + (
𝛿𝐺

𝛿𝑛1
)

𝑇,𝑝,𝑛′

𝑑𝑛1 + (
𝛿𝐺

𝛿𝑛2
)

𝑇,𝑝,𝑛′

𝑑𝑛2 + ⋯ … … … . . (5) 

Now partial molar Gibbs free energy or chemical potential of a substance j is defined as 

𝐺𝑗̅ = 𝜇𝑗 = (
𝛿𝐺

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′

… … … … … … . (6) 

Using (6) in (5), we get 

𝑑𝐺 = 𝑉𝑑𝑝 − 𝑆𝑑𝑇 + 𝜇1𝑑𝑛1 + 𝜇2𝑑𝑛2 + ⋯ … … … … … … … … … … … (7) 

Equation (7) is a fundamental equation of thermodynamics for open system. 

At constant T and P equation (7b) simplifies to 



𝑑𝐺 = 𝜇1𝑑𝑛1 + 𝜇2𝑑𝑛2 + ⋯ ⋯ ⋯ ⋯ ⋯ = ∑ 𝜇𝑗

𝑗

𝑑𝑛𝑗 ⋯ ⋯ ⋯ ⋯ ⋯ (8) 

Under same conditions 

                              𝑑𝐺 = 𝑑𝑤𝑒,𝑚𝑎𝑥 … … … … … … … … … … … … … … . (9) 

Therefore,    

 𝑑𝑤𝑒,𝑚𝑎𝑥 = ∑ 𝜇𝑗

𝑗

𝑑𝑛𝑗 … … … … … … … … … … … … … … . . (10) 

i.e. non-expansion work can arise from the changing composition of a system. 

From equation (8), Gibbs-free energy of a mixture is given by 

                        𝐺 = ∑ 𝑛𝑗𝜇𝑗

𝑗

… … … … … … … … … … … … . (11) 

New from, 

𝐻 = 𝑈 + 𝑃𝑉 

𝐴 = 𝑈 − 𝑇𝑆 

𝐺 = 𝐻 − 𝑇𝑆 

We get 

𝑈 = 𝐻 − 𝑃𝑉 

⇒ 𝑈 = 𝐺 + 𝑇𝑆 − 𝑃𝑉 … … (12𝑎) 

and 

𝐻 = 𝐺 + 𝑇𝑆 … … … … … … (12𝑏) 

𝐴 = 𝐺 − 𝑃𝑉 … … … … … … (12𝑐) 

Differentiating 12a, 12b and 12c 

𝑑𝑈 = 𝑑𝐺 + 𝑇𝑑𝑆 + 𝑆𝑑𝑇 − 𝑝𝑑𝑉 − 𝑉𝑑𝑝 

𝑑𝐻 = 𝑑𝐺 + 𝑇𝑑𝑆 + 𝑆𝑑𝑇 

𝑑𝐴 = 𝑑𝐺 − 𝑝𝑑𝑉 − 𝑉𝑑𝑝 

Substituting the value of dG from eqn (7) in the above equations 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 + ∑ 𝜇𝑗

𝑗

𝑑𝑛𝑗 … … … … … … … … … . (13a) 

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑝 + ∑ 𝜇𝑗

𝑗

𝑑𝑛𝑗 … … … … … … … … … . (13b) 



𝑑𝐴 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 + ∑ 𝜇𝑗

𝑗

𝑑𝑛𝑗 … … … … … … … … … . (13c) 

Equations (13a), (13b)) and (13c) are called fundamental equations for open system (including 

equation (7). These equations are also known as Gibbs equations. 

Partial Molar Gibbs free energy or chemical potential: 

The quantity 𝜇𝑗 defined as 𝜇𝑗 = (
𝛿𝐺

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′
 is known as the chemical potential of the jth 

component. Thus, chemical potential is the increase in G per mole that results when a small 

amount 𝑑𝑛𝑗  moles are added to the system keeping temperature, pressure and all other 

compositions constant. 

Chemical potential is a measure of escaping tendency. It is the chemical potential of a 

component in a system is high, the component has a large escaping tendency, while if the chemical 

potential is low, the component has a small escaping tendency. Matter flows spontaneously from 

a region of high chemical potential to a region of low chemical potential. 

Chemical potential of a component in a mixture of ideal gases 

Desired expression can be obtained using the relation between 𝜇𝑗 and 𝑉𝑗̅ given by 

(
𝛿𝜇𝑗

𝛿𝑃
)

𝑇,𝑛1,𝑛2…..

= 𝑉𝑗̅ … … … … … (1) 

where P is the total pressure of a system consisting of a number of ideal gases. Let 𝑛1, 𝑛2, … … .. 

be the number of moles of each constituent present in the mixture. 

Hence,  

𝑃𝑉 = (𝑛1 + 𝑛1 + ⋯ ⋯ + 𝑛1 + ⋯ ⋯ )𝑅𝑇 

⇒ 𝑉 = (𝑛1 + 𝑛1 + ⋯ ⋯ + 𝑛1 + ⋯ ⋯ )
𝑅𝑇

𝑃
 

where P is the total pressure of the mixture. 

Therefore, 

𝑉𝑗̅ = (
𝛿𝑉

𝛿𝑛𝑗
)

𝑇,𝑝,𝑛′

=
𝑅𝑇

𝑃
 

Using this (1) becomes. 

∴ (
𝛿𝜇𝑗

𝛿𝑃
)

𝑇,𝑛1,𝑛2…..

=
𝑅𝑇

𝑃
… … … … . . (2) 



So, 

𝑑𝜇𝑗 = 𝑅𝑇
𝑑𝑃

𝑃
 

Integrating this from pressure 𝑝0 = 1 𝑏𝑎𝑟 to any pressure of interest 𝑝, we get 

∫ 𝑑𝜇𝑗

𝑝

𝑝0=1 𝑏𝑎𝑟

= 𝑅𝑇 ∫
𝑑𝑃

𝑃

𝑝

𝑝0=1 𝑏𝑎𝑟

 

⇒ 𝜇
𝑗
(𝑝) − 𝜇

𝑗
(𝑝0) = 𝑅𝑇 ∫ 𝑑𝑙𝑛𝑃

𝑝

𝑝0

 

⇒ 𝜇
𝑗

− 𝜇
𝑗
0 = 𝑅𝑇 ∫ 𝑑𝑙𝑛𝑃 … … . . (3)

𝑝

𝑝0

 

 

Let 𝑝𝑗 be the partial pressure of the jth component, then 

𝑝𝑗 =
𝑛𝑗

𝑛
𝑃 

∴ 𝑑𝑙𝑛𝑝𝑗 = 𝑑𝑙𝑛𝑃                 [
𝑛𝑗

𝑛
 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡] 

Using this equation (3) becomes 

𝜇𝑗 − 𝜇𝑗
0 = 𝑅𝑇 ∫ 𝑑𝑙𝑛𝑝𝑗 … … . . (3)

𝑝𝑗

𝑝0

 

⇒ 𝜇
𝑗

− 𝜇
𝑗
0 = 𝑅𝑇𝑙𝑛

𝑝
𝑗

𝑝0
 

This expression gives the chemical potential of the jth component in a mixture of ideal gases. 

Gibbs-Duhem equation 

Let us consider a mixture of components 1, 2, 3,……….., j,……….., etc. having mole numbers 

𝑛1, 𝑛2, 𝑛3  … … . . , 𝑛𝑗 , … … … , 𝑒𝑡𝑐. If 𝜇1, 𝜇2, 𝜇3, … … … 𝑒𝑡𝑐 be the chemical potential of the 

components in the open system, then at constant T and P, total Gibbs free energy is given by 

additivity rule 

𝐺 = 𝑛1𝜇1 + 𝑛2𝜇2 + ⋯ ⋯ ⋯ + 𝑛𝑗𝜇𝑗 + ⋯ ⋯ 

⇒ 𝐺 = ∑ 𝑛𝑗𝜇𝑗

𝑗=1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1) 

Again, 



𝐺 = 𝑓(𝑇, 𝑝, 𝑛1, 𝑛2, … … … . , 𝑛𝑗) 

𝑑𝐺 = (
𝛿𝐺

𝛿𝑇
)

𝑝,𝑛𝑗

𝑑𝑇 + (
𝛿𝐺

𝛿𝑝
)

𝑇,𝑛𝑗

𝑑𝑝 + (
𝛿𝐺

𝛿𝑛1
)

𝑇,𝑝,𝑛′

𝑑𝑛1 + (
𝛿𝐺

𝛿𝑛2
)

𝑇,𝑝,𝑛′

𝑑𝑛2 + ⋯ ⋯ ⋯ ⋯ 

⇒ 𝑑𝐺 = 𝑉𝑑𝑝 − 𝑆𝑑𝑇 + 𝜇
1
𝑑𝑛1 + 𝜇

2
𝑑𝑛2 + ⋯ ⋯ ⋯ ⋯ ⋯ 

At constant T and p,  

(𝑑𝐺)𝑇,𝑝 = 𝜇1𝑑𝑛1 + 𝜇2𝑑𝑛2 + ⋯ ⋯ ⋯ ⋯ ⋯ ∑ 𝜇𝑗

𝑗=1

𝑑𝑛𝑗 ⋯ ⋯ (2) 

From (1),  

(𝑑𝐺)𝑇,𝑝 = (𝑛1𝑑𝜇1 + 𝜇1𝑑𝑛1) + (𝑛2𝑑𝜇2 + 𝜇2𝑑𝑛2) + ⋯ ⋯ ⋯ ⋯ ⋯ 

 

⇒ (𝑑𝐺)𝑇,𝑝 = (𝑛1𝑑𝜇1 + 𝑛2𝑑𝜇2 + ⋯ ⋯ ) + (𝜇1𝑑𝑛1 + 𝜇2𝑑𝑛2 + ⋯ ⋯ ) 

 

⇒ (𝑑𝐺)𝑇,𝑝 = ∑ 𝑛𝑗

𝑗=1

𝑑𝜇𝑗 + ∑ 𝜇𝑗

𝑗=1

𝑑𝑛𝑗 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (3) 

Comparing (2) and (3), 

∑ 𝑛𝑗

𝑗=1

𝑑𝜇𝑗 = 0 

This equation is known as Gibbs-Duhem equation. 

Significance: 

Gibbs-Duhem equation for a binary solution of components 1 and 2 can be written as 

𝑛1𝑑𝜇1 + 𝑛2𝑑𝜇2 = 0 

⇒ 𝑑𝜇1 = −
𝑛2

𝑛1
𝑑𝜇2 

This implies that chemical potential of the components of a mixture cannot change 

independently. In a binary mixture if chemical potential of one component increases then 

chemical potential for the other component must decrease. 

 

 

 

 

 



Change in thermodynamic functions in mixing of ideal gases 

The Gibbs energy of mixing, ∆𝑚𝑖𝑥𝐺 

Let the amounts of two perfect gases in two containers be 𝑛𝐴 and 𝑛𝐵 ; both are at a temperature 

T and pressure P. 

At this stage, the free energy of the total system is given by the additivity rule 

𝐺𝑖 = 𝑛𝐴𝜇𝐴 + 𝑛𝐵𝜇𝐵 

Again, the chemical potentials of the ideal gas A and B are given by 

𝜇𝐴 = 𝜇𝐴
0 + 𝑅𝑇𝑙𝑛 (

𝑃

𝑝0
) 

𝜇𝐵 = 𝜇𝐵
0 + 𝑅𝑇𝑙𝑛 (

𝑃

𝑝0
) 

∴ 𝐺𝑖 = 𝑛𝐴 {𝜇𝐴
0 + 𝑅𝑇𝑙𝑛 (

𝑃

𝑝0
)} + 𝑛𝐵 {𝜇𝐵

0 + 𝑅𝑇𝑙𝑛 (
𝑃

𝑝0
)} 

After mixing, the partial pressures of the gases are 𝑝𝐴 and 𝑝𝐵 with total pressure  

𝑃 = 𝑝𝐴 + 𝑝𝐵 

Again, the chemical potential of the component ideal gases in the mixture is given by 

𝜇𝐴 = 𝜇𝐴
0 + 𝑅𝑇𝑙𝑛 (

𝑝𝐴

𝑝0
) 

𝜇𝐵 = 𝜇𝐵
0 + 𝑅𝑇𝑙𝑛 (

𝑝𝐵

𝑝0
) 

The total Gibbs energy changes to 

𝐺𝑓 = 𝑛𝐴 {𝜇𝐴
0 + 𝑅𝑇𝑙𝑛 (

𝑝𝐴

𝑝0
)} + 𝑛𝐵 {𝜇𝐵

0 + 𝑅𝑇𝑙𝑛 (
𝑝𝐵

𝑝0
)} 

Gibbs energy of mixing is given by 

                ∆𝑚𝑖𝑥𝐺 = 𝐺𝑓 − 𝐺𝑖 

    = 𝑛𝐴𝑅𝑇𝑙𝑛 (
𝑝𝐴

𝑝0
) − 𝑛𝐴𝑅𝑇𝑙𝑛 (

𝑃

𝑝0
) + 𝑛𝐵𝑅𝑇𝑙𝑛 (

𝑝𝐵

𝑝0
) − 𝑛𝐵𝑅𝑇𝑙𝑛 (

𝑃

𝑝0
) 

                                = 𝑛𝐴𝑅𝑇𝑙𝑛 (
𝑝𝐴

𝑃
) + 𝑛𝐵𝑅𝑇𝑙𝑛 (

𝑝𝐵

𝑃
) 

Now, mole fraction of A,  

𝑥𝐴 =
𝑛𝐴

𝑛
 

and, mole fraction of B,  



𝑥𝐵 =
𝑛𝐵

𝑛
 

And, partial pressures 

𝑝𝐴 = 𝑥𝐴𝑃 

⇒ 𝑥𝐴 =
𝑝𝐴

𝑃
 

And 

𝑝𝐵 = 𝑥𝐵𝑃 

⇒ 𝑥𝐵 =
𝑝𝐵

𝑃
 

With these modifications 

∆𝑚𝑖𝑥𝐺 = 𝑛𝑅𝑇(𝑥𝐴𝑙𝑛𝑥𝐴 + 𝑥𝐵 𝑙𝑛𝑥𝐵) 

Because  𝑥𝐴 < 1 and 𝑥𝐵 < 1, the logarithms in this equation are negative, and ∆𝑚𝑖𝑥𝐺 < 0. 

∴ Perfect gases mix spontaneously in all proportions. 

If there are more than two components of the mixture, the above equation becomes 

∆𝑚𝑖𝑥𝐺 = 𝑛𝑅𝑇(𝑥𝐴𝑙𝑛𝑥𝐴 + 𝑥𝐵𝑙𝑛𝑥𝐵 + 𝑥𝐶𝑙𝑛𝑥𝐶 + ⋯ ⋯ ⋯ ) 

                                                   = 𝑛𝑅𝑇 ∑ 𝑥𝑗𝑙𝑛𝑥𝑗 ⋯ ⋯ ⋯ (1) 

 
Entropy of mixing, ∆𝑚𝑖𝑥𝑆 

Because 

(
𝛿𝐺

𝛿𝑇
)

𝑝,𝑛𝑗

= −𝑆 

for a mixture of perfect gases 

(
𝛿∆𝑚𝑖𝑥𝐺

𝛿𝑇
)

𝑝,𝑛𝑗

= −∆𝑚𝑖𝑥𝑆 



⇒ ∆𝑚𝑖𝑥𝑆 = − (
𝛿∆𝑚𝑖𝑥𝐺

𝛿𝑇
)

𝑝,𝑛𝑗

 

⇒ ∆𝑚𝑖𝑥𝑆 = −𝑛𝑅 ∑ 𝑥𝑗𝑙𝑛𝑥𝑗 ⋯ ⋯ ⋯ (2) 

Because 𝑙𝑛𝑥𝑗 < 0, it follows that ∆𝑚𝑖𝑥𝑆 > 0 for all compositions. This increase in entropy is 

expected because when one gas disperses into the other the system becomes more chaotic. 

 

Enthalpy of mixing, ∆𝑚𝑖𝑥𝐻 

This can be calculated by  

∆𝑚𝑖𝑥𝐺 = ∆𝑚𝑖𝑥𝐻 − 𝑇∆𝑚𝑖𝑥𝑆 

From (1) and (2) 

𝑛𝑅𝑇 ∑ 𝑥𝑗𝑙𝑛𝑥𝑗 = ∆𝑚𝑖𝑥𝐻 + 𝑛𝑅𝑇 ∑ 𝑥𝑗𝑙𝑛𝑥𝑗 

                                                  ⇒ ∆𝑚𝑖𝑥𝐻 = 0 

There is no heating effect associated with the formation of an ideal gas mixture because in an ideal 

system there are no interactions between particles. The whole of the driving force for mixing comes 

from the increase in entropy of the system. The mixing is entirely an entropy effect. Gibbs free 

energy of mixing stems from the change in disorder of the system that arises from the mingling of 

the molecules of the gases. 

Prob: Show that the molar free energy of mixing in a binary ideal gas mixture is minimum when 

𝑥1 = 𝑥2 =
1

2
 

 


